Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wenying Wei, Yang Dong, Jinyu Han and Heying Chang*

Key Laboratory for Green Chemical Technology of the State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: wwy7324@eyou.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.036$
$w R$ factor $=0.098$
Data-to-parameter ratio $=11.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[piperazinium [diaquacobalt(II)-μ-benzene-1,3,5-tricaboxylato-tetraaquacobalt(II)-μ-benzene-1,3,5-tricaboxylato] dihydrate]

The title polymer, $\left\{\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Co}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, contains two independent $\mathrm{Co}^{\mathrm{II}}$ atoms, both of which are located on inversion centres. The benzene-1,3,5-tricarboxylate ligand bridges the $\mathrm{Co}^{\mathrm{II}}$ atoms in two coordination modes to form a one-dimensional polymeric zigzag chain structure. The zigzag chains are connected via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a three-dimensional network. This determination corrects a previous report which formulated this compound as $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{n}\left[\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Co}_{2} \mathrm{O}_{18}\right]_{n} \cdot 2 n \mathrm{H}_{2} \mathrm{O}$ [Chen \& Liu (2004). Chem. J. Chin. Univ. 25, 1189-1193].

Comment

Benzene-1,3,5-tricarboxylate (BTC) usually plays the role of a bridging ligand in metal complexes. We present here the crystal structure of the title $\mathrm{Co}^{\mathrm{II}}$ complex, $\left[\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Co}_{2} \mathrm{O}_{18}\right)^{2-}\right]_{n} \cdot n\left[\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right]^{2+} \cdot 2 n \mathrm{H}_{2} \mathrm{O}$, (I). This determination corrects a previous report which formulated this compound as $\left[\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Co}_{2} \mathrm{O}_{18}\right]_{n} \cdot n\left[\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{2}\right] \cdot 2 n \mathrm{H}_{2} \mathrm{O}$, (II) (Chen \& Liu, 2004). In compound (II), the $\mathrm{C}-\mathrm{O}$ bond lengths [1.251 and $1.262 \AA$] of the uncoordinated carboxylate groups clearly indicate proton transfer from them to a piperazine ring, resulting in a $\left[\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right]^{2+}$ cation. However, in (II), the components were reported as neutral. In (I), the proton transfer is taken into account, and the protons are assigned to the piperazine ring.

Compound (I) contains two independent $\mathrm{Co}^{\mathrm{II}}$ atoms, which are located at the centres of different centrosymmetric CoO_{6} octahedra (Fig. 1). Each BTC ligand bridges two $\mathrm{Co}^{\mathrm{II}}$ atoms to form a polymeric zigzag chain, and these are further linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a three-dimensional network (Table 1). Two carboxylate groups of the BTC ligand coordinate to $\mathrm{Co}^{\mathrm{II}}$ atoms, one in a monodentate fashion and the other in a bidentate chelating fashion. The third

Received 14 November 2005 Accepted 29 November 2005 Online 7 December 2005
carboxylate group is not coordinated to $\mathrm{Co}^{\mathrm{II}}$. The packing of the chains forms quadrilateral pores, which are occupied by $\left[\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right]^{2+}$ cations and uncoordinated water molecules (Fig. 2).

Experimental

An aqueous solution (10 ml) of benzene-1,3,5-tricarboxylic acid $(0.210 \mathrm{~g})$, terephthalic acid $(0.166 \mathrm{~g})$ and piperazine hexahydrate $(0.132 \mathrm{~g})$ was mixed with an aqueous solution (5 ml) of cobalt(III) nitrate hexahydrate (0.292 g) with continuous stirring. The mixture was sealed in a 40 ml Teflon-lined stainless steel vessel and heated at 453 K for 96 h under autogenous conditions. After cooling to room temperature, the resulting product was filtered off to obtain pale-red crystals of (I) (about 76.2% yield, based on the Co source). Spectroscopic analysis: IR $\left(\mathrm{KBr}, v, \mathrm{~cm}^{-1}\right): 3120,2445,2345,1610,1532$, 1454, 1429, 1363, 1202, 1087, 754, 712, 542, 521, 459. Elemental analysis, calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}$ Co O_{10} : C 34.54, H 4.48, $\mathrm{N} 3.66 \%$; found: C 34.45, H 4.51, N 3.62%.

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Co}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]-$	$Z=1$
$2 \mathrm{H}_{2} \mathrm{O}$	$D_{x}=1.764 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=764.38$	Mo $\alpha \alpha$ radiation
Triclinic, $P \overline{1}$	Cell parameters from 1224
$a=7.1443(11) \AA$	reflections
$b=10.5308(16) \AA$	$\theta=2.1-25.0^{\circ}$
$c=10.5385(16) \AA$	$\mu=1.25 \mathrm{~mm}^{-1}$
$\alpha=110.753(2)^{\circ}$	$T=293(2) \mathrm{K}$
$\beta=102.521(2)^{\circ}$	Block, pale red
$\gamma=91.351(2)^{\circ}$	$0.20 \times 0.12 \times 0.10 \mathrm{~mm}$
$V=719.40(19) \AA^{3}$	
Data collection	
Bruker SMART APEX2 CCD area-	2503 independent reflections
detector diffractometer	1957 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.015$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.1^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-8 \rightarrow 8$
$T_{\text {min }}=0.638, T_{\text {max }}=0.883$	$k=-12 \rightarrow 12$
3896 measured reflections	$l=-8 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.098$
$S=1.01$
2503 reflections
211 parameters

Table 1

Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 5^{\mathrm{i}}$	0.90	1.86	2.751 (4)	168
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 9^{\text {ii }}$	0.90	2.03	2.880 (4)	157
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 8^{\text {iii }}$	0.90	2.42	3.011 (4)	124
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 4^{\text {iv }}$	0.85	1.78	2.622 (3)	173
O7-H7B $\cdots \mathrm{O} 11$	0.85	1.93	2.733 (4)	157
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\text {v }}$	0.85	1.91	2.740 (3)	162
$\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O}^{\text {vi }}$	0.85	1.83	2.657 (3)	166
O9-H9A $\cdots \mathrm{Ob}^{\text {v }}$	0.85	1.87	2.703 (3)	165
O9-H9B \cdots O4	0.85	1.83	2.640 (3)	158
O11-H11A $\cdots \mathrm{O}^{\text {vi }}$	0.85	1.91	2.722 (4)	158
O11-H11B \cdots O7 ${ }^{\text {vii }}$	0.85	2.14	2.934 (4)	156

[^0] $x, y-1, z$; (v) $x, y, z-1$; (vi) $-x+1,-y+2,-z+1$; (vii) $-x+1,-y+1,-z+1$.

Figure 1
Part of the polymeric structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffixes A, B and C are generated by the symmetry operations $(-x, 2-y,-z),(2-x, 1-y,-z)$ and $(-x, 1-y$, $1-z$), respectively.

Figure 2
The crystal packing of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.

The water H atoms were located in a difference map; their bond lengths were set to ideal values $[\mathrm{O}-\mathrm{H}=0.85$ and $\mathrm{H} \cdots \mathrm{H}=1.37 \AA$] and they were refined using a riding model $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})\right]$. The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.90 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: APEX2 (Bruker, 1997); cell refinement: APEX2; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). APEX2 (Version 1.0-22) and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, J.-X. \& Liu, S.-X. (2004). Chem. J. Chin. Univ. 25, 1189-1193.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison Wisconsin, USA.

[^0]: Symmetry codes: (i) $x, y-1, z-1$; (ii) $x+1, y-1, z$; (iii) $-x+1,-y+1,-z$; (iv)

